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Abstract

This paper explores three manifestations of the same underlying problem: how do
distributed agents—whether miners, neurons, or people—arrive at shared agreement without
central authority? We begin with Bitcoin’s Proof-of-Work consensus, establishing rigorous
security bounds via Poisson processes and the regularized incomplete beta function. We
then develop a formal analogy between knowledge distillation in neural networks and human
behavioural learning, arguing that this connection has underappreciated implications for
criminology’s rational actor model—not as a dissolution of responsibility, but as a richer
account of how behavioural patterns propagate. Finally, we present a scaled-back analysis of
social consensus for identity verification and vote counting, treating the OMXUS protocol as
a case study in graph-based Sybil resistance. Throughout, we are explicit about where the
mathematics is rigorous, where it is merely suggestive, and where open problems remain.
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Part I

Computational Consensus: Bitcoin

1 Introduction

Bitcoin, introduced by Nakamoto in 2008 [1], solved the problem of decentralised monetary
consensus: how can a network of mutually distrusting nodes agree on the state of a shared
ledger? The answer rests on cryptographic hash functions, Poisson processes, and game-theoretic
incentives.

This part presents the standard mathematical treatment. The results are well-established;
we include them both for completeness and because they serve as a rigorous benchmark against
which the less formal arguments in later parts can be measured.

2 Cryptographic Primitives

Definition 2.1 (Cryptographic Hash Function). A function H : {0, 1}∗ → {0, 1}256 is a
cryptographic hash function if it satisfies:

1. Preimage resistance: Given y, it is computationally infeasible to find x with H(x) = y.

2. Collision resistance: It is computationally infeasible to find x ̸= x′ with H(x) = H(x′).

3. Pseudo-randomness: Changing a single bit of x causes each output bit of H(x) to flip
independently with probability 1/2.

Bitcoin uses SHA-256 for block hashing, RIPEMD-160 for address derivation, and ECDSA
(over the secp256k1 curve) for transaction signatures. The blockchain structure links blocks via
hash pointers:

BlockHeader =
(
H(PrevBlock), MerkleRoot, Timestamp, Difficulty, Nonce

)
(1)

where the Merkle root commits to all n transactions with O(log n) membership proofs.

3 The Mining Process as a Poisson Model

3.1 Exponential Inter-Block Times

Let a miner control fraction p ∈ (0, 1] of total network hashrate, with blocks validated network-
wide at average rate one per τ0 = 10 minutes.

Theorem 3.1 (Mining Time Distribution). The time T between successive blocks discovered by
our miner follows an exponential distribution with rate α = p/τ0:

fT (t) = αe−αt, t ≥ 0. (2)

Proof. The pseudo-random property of H ensures each hash attempt is independent. Let P (t)
denote the probability of not finding a valid block by time t. Independence across disjoint
intervals gives P (t+ s) = P (t) · P (s). The unique continuous solution is P (t) = e−αt for some
α > 0. Since E[T ] = τ0/p, we have α = p/τ0.

The sum Sn = T1 + · · ·+ Tn of n i.i.d. inter-block times follows a Gamma(n, α) distribution,
and the block count N(t) up to time t is Poisson with parameter αt:

P[N(t) = n] =
(αt)n

n!
e−αt. (3)
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3.2 The Double-Spend Problem

An attacker with hashrate fraction q (honest fraction p = 1− q) attempts to replace a confirmed
transaction by secretly mining an alternative chain.

Theorem 3.2 (Double-Spend Probability; Grunspan & Pérez-Marco, 2017 [2]). After z confir-
mations, the probability of a successful double-spend by an attacker with q < 1/2 is:

P (z) = I4pq(z, 1/2) (4)

where Ix(a, b) is the regularised incomplete beta function:

Ix(a, b) =
Γ(a+ b)

Γ(a) Γ(b)

∫ x

0
ta−1(1− t)b−1 dt. (5)

Corollary 3.3 (Exponential Decay). Setting s = 4pq < 1, the double-spend probability decays
as:

P (z) ∼ sz√
π(1− s) z

as z → ∞. (6)

Table 1: Double-spend probability P (z) for various attacker hashrates q.

z q = 0.10 q = 0.20 q = 0.30 q = 0.40

1 0.2045 0.3781 0.5310 0.6696
2 0.0509 0.1531 0.2937 0.4560
3 0.0134 0.0641 0.1653 0.3138
4 0.0036 0.0272 0.0938 0.2175
5 0.0010 0.0117 0.0536 0.1514
6 0.0003 0.0050 0.0308 0.1058

4 Protocol Stability

4.1 Honest Mining is Optimal

Theorem 4.1 (Grunspan & Pérez-Marco, 2018 [3]). In the absence of difficulty adjustment, the
revenue-maximising strategy is to publish all blocks immediately upon discovery.

Proof. Define the revenue ratio Γ = E[R]/E[τ ] for reward R per cycle of duration τ . Since N(t)
is Poisson with intensity α = p/τ0, the process M(t) = N(t)− αt is a martingale. By Doob’s
optional stopping theorem, E[N(τ)] = αE[τ ] for any stopping time τ , giving Γ ≤ pb/τ0 = ΓH

with equality only for honest mining.

4.2 Selfish Mining

The selfish mining attack [4] withholds blocks for strategic advantage. With network connectivity
γ ∈ (0, 1), this becomes profitable when q > (1− γ)/(3− 2γ). For average connectivity (γ = 0.5),
the threshold is q > 0.25.

Remark 4.2. This is a genuine vulnerability: the honest-is-optimal result in Theorem 4.1
assumes no difficulty adjustment. Real Bitcoin adjusts difficulty every 2016 blocks, which selfish
mining can exploit. The gap between the theoretical and practical security models remains an
active research area.
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Part II

Distillation as a Theory of Learned
Behaviour

5 Motivation: From Neural Networks to Human Learning

In machine learning, knowledge distillation [5] trains a simple “student” network to reproduce the
outputs of a complex “teacher.” The student never sees the teacher’s internal reasoning—only
its behavioural outputs (soft probability distributions over outcomes). Yet the student learns to
approximate the teacher’s competence remarkably well.

We argue this is not merely a metaphor for human behavioural learning—it is structurally
the same process. A child learning emotional regulation from a caregiver does not receive explicit
rules. Instead, they observe the caregiver’s behavioural outputs (reactions to situations) and,
through repeated exposure and feedback, learn to approximate those responses. The “knowledge”
is never explicitly transmitted; it is distilled from observed behaviour.

This section formalises the analogy, identifies where it holds rigorously and where it is
suggestive, and draws out implications for criminology.

6 Knowledge Distillation: Formal Framework

6.1 The Standard Setup

Definition 6.1 (Knowledge Distillation). Let fT : X → ∆C−1 be a teacher model mapping inputs
to probability distributions over C classes, and fS : X → ∆C−1 a student model. Distillation
minimises:

LKD = (1− λ)LCE(fS , y) + λT 2 ·KL
(
σ(zT /T ) ∥ σ(zS/T )

)
(7)

where zT , zS are teacher and student logits, σ is the softmax function, T > 1 is a temperature
parameter, y is the true label, and λ ∈ [0, 1] balances the two objectives.

The temperature T controls how much “dark knowledge” is transferred. At T = 1, the
student only sees the teacher’s hard predictions. As T increases, softer distributions reveal the
teacher’s uncertainty structure—which wrong answers are “almost right,” which classes the
teacher finds confusable.

Proposition 6.2 (Dark Knowledge Transfer). In the high-temperature limit T → ∞, the KL
term in (7) reduces to matching the teacher’s logit differences:

KL
(
σ(zT /T ) ∥ σ(zS/T )

)
≈ 1

2CT 2

C∑
c=1

(zT,c − zS,c)
2 +O(T−3). (8)

The student thus learns not just what the teacher predicts, but the relative structure of the
teacher’s uncertainty.

6.2 Graph-Structured Distillation

When the data has graph structure—as in social networks—Graph Neural Networks (GNNs)
aggregate information from node neighbourhoods. The Distill n’ Explain (DnX) framework [13]
distils a GNN teacher into a simpler student, extracting explanations of which neighbourhood
structures drive predictions.
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Definition 6.3 (Neighbourhood Aggregation). A GNN with L layers computes node represen-
tations via:

h(ℓ+1)
v = ϕ

h(ℓ)v ,
⊕

u∈N (v)

ψ
(
h(ℓ)v , h(ℓ)u

) (9)

where N (v) is the neighbourhood of v,
⊕

is a permutation-invariant aggregation (e.g., mean,
sum), and ϕ, ψ are learnable functions.

This is where the structural analogy to social learning becomes precise: in a GNN, each
node’s representation is shaped by its neighbourhood’s features through iterated message-passing,
just as an individual’s behavioural repertoire is shaped by their social environment through
repeated interaction.

7 The Human Learning Analogy

7.1 Structure of the Mapping

We now make the analogy explicit. This is not a proof—it is a structural correspondence that
we argue is productive.

Table 2: Structural correspondence between knowledge distillation and human behavioural
learning.

Component Distillation Human Learning

Teacher Complex model fT Caregiver / social environment
Student Simple model fS Developing individual
Input Data point x ∈ X Situation / stimulus
Output Soft distribution σ(z/T ) Behavioural response
Dark knowledge Inter-class uncertainty Implicit emotional cues
Temperature T (softness of signal) Emotional expressiveness
Loss function LKD Reinforcement / consequence
Graph structure N (v) in GNN Social network

7.2 What This Explains That Rational Choice Does Not

The rational actor model in criminology [9, 10] posits that criminal behaviour results from
utility-maximising deliberation: an individual weighs expected benefits against expected costs
and “chooses” crime when the payoff exceeds the risk.

This model has been productive but struggles with several well-documented phenomena:

1. Impulsive and emotionally-driven offending: Many crimes—particularly violent
ones—show no evidence of cost-benefit calculation.

2. Intergenerational transmission: Criminal behaviour runs in families and communities
at rates that exceed what rational imitation would predict.

3. Context sensitivity: The same individual behaves very differently across social environ-
ments, suggesting behaviour is not driven by stable preferences.

The distillation analogy offers a complementary explanation. If individuals learn behavioural
responses by approximating the soft outputs of their social environment—not the explicit rules,
but the implicit distribution over responses—then:
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� Impulsive behaviour corresponds to a student trained at high temperature: the individual
has absorbed the full uncertainty structure of their environment, including volatile and
extreme responses.

� Intergenerational transmission corresponds to iterated distillation: each generation
distils its behaviour from the previous one, with compounding approximation errors (cf.
the “generation loss” problem in repeated distillation [12]).

� Context sensitivity corresponds to domain shift: a model trained on one distribution of
inputs may behave unpredictably on another.

7.3 Relationship to Existing Theories

We should be clear: the observations above are not new. Bandura’s social learning theory [6]
established decades ago that behaviour is learned through observation and reinforcement.
Sutherland’s differential association theory [7] argued that criminal behaviour is learned through
interaction with intimate personal groups. Merton’s strain theory [8] connected social structure
to behavioural outcomes.

The distillation framing does not replace these theories. What it adds is:

1. A formal mechanism: the KL-divergence loss provides a precise mathematical descrip-
tion of “approximating observed behaviour,” which could in principle be tested against
behavioural data.

2. The dark knowledge insight: the most important thing transmitted between teacher
and student is not the correct answer but the structure of uncertainty—which alternatives
are “close.” Applied to human learning, this suggests that what children absorb from
caregivers is not “anger is the right response” but a whole distribution: “anger is likely,
withdrawal is possible, calm is unlikely.”

3. Graph-structured propagation: social learning is not dyadic. It occurs in networks,
with neighbourhood aggregation, exactly as in GNNs.

8 On Responsibility

A natural objection: if behaviour is learned through an unconscious distillation-like process,
does anyone bear responsibility for their actions?

We think the answer is straightforwardly yes, and that the distillation framework actually
clarifies why.

Consider: a neural network trained by distillation is responsible for its outputs in the
engineering sense—we evaluate it, deploy it or don’t, and retrain it if it fails. The fact that it
learned its behaviour from a teacher does not absolve the deployed model of producing correct
outputs. The teacher’s influence is the causal history ; the model’s current weights are the present
reality.

The same holds for people. You may have acquired a behavioural pattern from your
environment decades ago. Understanding that causal history is valuable—it informs intervention,
prevention, and rehabilitation. But the pattern is now yours. It operates through your nervous
system, produces your actions, and affects other people. The origin of a problem does not
determine its ownership.

Remark 8.1 (Practical implication). This framing suggests that criminal justice should focus
less on punishing “rational choices” (which may not have occurred) and more on retraining—
providing new data, new environments, and new feedback signals that update the individual’s
learned behavioural distribution. This is, in essence, what evidence-based rehabilitation pro-
grammes already do.
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8.1 Formal Analogy to Fine-Tuning

In machine learning, a model with poor behaviour can be corrected through fine-tuning : continued
training on curated data with an appropriate loss function. The analogy to rehabilitation is
direct:

Lrehab = KL
(
πprosocial ∥ πcurrent

)
(10)

where πprosocial is a target behavioural distribution and πcurrent is the individual’s present
response distribution. Minimising this divergence—through structured environments, modelling
of alternative responses, and reinforcement—corresponds to updating the “student’s” weights
toward better behaviour.

The critical point: fine-tuning works precisely because the model is responsible for its current
weights. If the model were merely a passive conduit for the teacher’s outputs, fine-tuning would
be incoherent. Responsibility and learned behaviour are not in tension; they are complementary.

Part III

Social Consensus for Identity and Vote
Counting

9 Scope and Honest Limitations

Part I established rigorous, well-cited results about Bitcoin. Part II developed a suggestive but
not formally proven analogy. This part occupies a middle ground: we present a mathematical
framework for social consensus that is internally consistent but whose security guarantees depend
on empirical parameters (the “social cost of fraud”) that are difficult to measure precisely.

We focus narrowly on the problem OMXUS was designed to address: counting unique
humans for fair resource distribution, analogous to vote counting. We do not claim the
system achieves security “comparable to Bitcoin”—the threat models are fundamentally different,
and honest comparison requires acknowledging this.

10 The Sybil Problem in Identity Systems

Definition 10.1 (Sybil Attack [11]). In an identity system, a Sybil attack is the creation of
multiple fake identities by a single entity to gain disproportionate influence.

The fundamental result of Douceur [11] is that without a trusted central authority, Sybil
attacks cannot be prevented in a purely open network. All practical defences therefore impose
some cost on identity creation.

Bitcoin imposes computational cost (hashrate). OMXUS imposes social cost (vouching from
existing verified humans). Neither is absolute; both create economic deterrence.

11 Web-of-Trust Verification

11.1 Graph Model

Definition 11.1 (Verification Graph). The verification graph is a directed graph G = (V,E)
where V is the set of verified identities and (u, v) ∈ E if u vouched for v. Each vertex has
in-degree d−(v) ≥ k (minimum vouch requirement; k = 3 in OMXUS).
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Definition 11.2 (Vouch Cost). Let cvouch denote the cost of a single fraudulent vouch, incorpo-
rating:

cvouch = cphysical + P[detection] · cpenalty (11)

where cphysical is the cost of in-person NFC verification and cpenalty is the expected loss from
detection (trust score reduction, potential ejection).

Proposition 11.3 (Linear Sybil Cost). Creating n Sybil identities requires at least nk fraudulent
vouches. If each vouch has independent cost cvouch, the total attack cost is:

C(n) ≥ n · k · cvouch. (12)

Remark 11.4. This is an argument, not a theorem in the sense of Part I. The bound depends
on cvouch being accurately estimated, on voucher independence (which collusion violates), and on
the detection probability being non-trivial. We state it as a proposition to be honest about its
epistemic status.

11.2 Collusion Detection

Independence among vouchers is the key assumption. The system attempts to enforce it through
graph analysis:

Definition 11.5 (Collusion Indicator). For a set of vouchers S supporting candidate v, define:

I(S) = |E(S)|(|S|
2

) (13)

where E(S) is the edge set of the subgraph induced by S. High values of I(S) indicate potential
collusion.

This is a heuristic, not a guarantee. Sophisticated attackers can maintain low I(S) by using
vouchers who are not directly connected. The system raises the cost of attack but does not
eliminate it.

11.3 Fair Distribution

The narrow claim we can make precisely:

Theorem 11.6 (Equal Per-Capita Distribution). If the verification graph correctly represents
unique humans (i.e., no Sybil identities exist), then the distribution mechanism:

ri(t) =
R(t)

|V (t)|
for all i ∈ V (t) (14)

achieves equal per-capita allocation of resource R(t) at time t.

Proof. Immediate from the definition. The content of the theorem is that the mechanism is
correct given its assumption. The security question is how well the web-of-trust enforces the
assumption.

Remark 11.7. This is the honest version of the security claim. The system’s fairness is exactly
as good as its Sybil resistance, which depends on empirical parameters we cannot pin down with
the same precision as Bitcoin’s hash-rate-based security.

10



12 Bitcoin Anchoring

OMXUS can inherit Bitcoin’s well-established security for data integrity by periodically commit-
ting state roots to the Bitcoin blockchain.

Definition 12.1 (Epoch Commitment). For epoch e, the system computes a Merkle Mountain
Range root Re over all identity records and publishes it in a Bitcoin transaction. After z Bitcoin
confirmations, reverting Re requires a Bitcoin double-spend, with probability I4pq(z, 1/2) per
Theorem 3.2.

This is the one place where OMXUS genuinely inherits Bitcoin-grade security: not for identity
verification itself, but for the immutability of committed records.

Part IV

Synthesis

13 Three Modes of Distributed Agreement

The three parts of this paper address the same abstract problem—distributed consensus—in
three different substrates:

Table 3: Three consensus mechanisms and their properties.

Bitcoin Distillation Web-of-Trust

Agents Miners Neurons / people Verified humans
Agreement on Transaction ordering Behavioural distribution Identity uniqueness
Cost of deviation Wasted hashrate Prediction error / consequences Social cost
Formal guarantees Strong (Thm 3.2) Bounded (Prop 6.2) Conditional (Prop 11.3)
Open problems Selfish mining gap Causal identification Measuring cvouch

14 What Connects Them

The deep connection is that all three systems achieve agreement through costly signalling:

� In Bitcoin, the signal is a valid proof-of-work, costly because it requires energy and
hardware.

� In distillation/human learning, the signal is behavioural consistency with one’s environ-
ment, costly because deviation incurs consequences (prediction error for networks; social
punishment for people).

� In web-of-trust, the signal is a vouch from an existing member, costly because the voucher
stakes their own standing.

In each case, the cost of the signal is what prevents the system from being trivially exploited.
The systems differ in how precisely we can quantify that cost—and therefore how rigorous the
resulting security guarantees are.

15 Open Problems

1. Formalising social cost: Can csocial be measured empirically, perhaps through mechanism
design experiments? Without this, web-of-trust security arguments remain qualitative.
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2. Testing the distillation analogy: The correspondence in Table 2 generates testable
predictions—e.g., that “high-temperature” social environments (emotionally volatile, in-
consistent caregiving) should produce broader behavioural variance. Is this consistent with
longitudinal data?

3. Iterated distillation loss: In machine learning, repeatedly distilling from student to
student causes gradual degradation [12]. Does intergenerational behavioural transmission
show analogous “generation loss”? If so, this has direct implications for intervention
timing.

4. The selfish mining gap: Theorem 4.1 assumes no difficulty adjustment. Closing the gap
between the idealised and realistic Bitcoin security models remains open.

5. Graph-based social learning: Can GNN message-passing architectures be calibrated
against actual social network influence data to test whether neighbourhood aggregation is
a good model of human behavioural learning?

16 Conclusion

We have presented three perspectives on distributed consensus, at three levels of mathematical
rigour:

1. Bitcoin’s Proof-of-Work, where exact probabilities can be computed via the incomplete
beta function and protocol optimality can be proven via martingale theory.

2. Knowledge distillation as a model of human behavioural learning, where the formal
machinery is suggestive and the structural analogy is precise, but causal claims require
empirical validation.

3. Social consensus for identity verification, where the mathematical framework is sound but
the key security parameter (cvouch) resists precise quantification.

The value of placing these side by side is not to pretend they are equally rigorous—they are
not. It is to show that the same structural problem (agreement among distrusting agents) recurs
across domains, and that tools from one domain can illuminate another.

The distillation analogy, in particular, offers criminology something concrete: a formal
framework for “learning behaviour from observation” that goes beyond metaphor to specify
mechanisms, make predictions, and connect to a large body of machine learning theory. Whether
this framework ultimately proves empirically productive is an open question. But it is, we think,
worth asking.

Consensus is not agreement imposed from above.
It is agreement that emerges from cost, structure, and repeated interaction—

whether the agents are machines, neurons, or people.
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[2] C. Grunspan and R. Pérez-Marco, “Double spend races,” Int. J. Theoretical and Applied
Finance, vol. 21, no. 8, 2018.
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